. A G ] 1 3 D ec 1 99 9 Hilbert schemes , wreath products , and the McKay correspondence

نویسنده

  • Weiqiang Wang
چکیده

Various algebraic structures have recently appeared in a parallel way in the framework of Hilbert schemes of points on a surface and respectively in the framework of equivariant K-theory [N1, Gr, S2, W], but direct connections are yet to be clarified to explain such a coincidence. We provide several non-trivial steps toward establishing our main conjecture on the isomorphism between the Hilbert quotient of the affine space C2n by the wreath product Γn = Γ ∼ Sn and Hilbert schemes of points on the minimal resolution of a simple singularity C2/Γ. We discuss further various implications of our main conjecture. We obtain a key ingredient toward a direct isomorphism between two forms of McKay correspondence in terms of Hilbert schemes [N1, Gr, N2] and respectively of wreath products [FJW]. We in addition establish a direct identification of various algebraic structures appearing in two different setups of equivariant K-theory [S2, W].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Farahat-higman Ring of Wreath Products and Hilbert Schemes

We study the structure constants of the class algebra RZ(Γn) of the wreath products Γn associated to an arbitrary finite group Γ with respect to a basis provided by the conjugacy classes. A suitable filtration on the RZ(Γn) gives rise to the rings GΓ(n) with non-negative integer structure constants independent of n, which are then encoded in a single (Farahat-Higman) ring GΓ. We establish vario...

متن کامل

A ] 7 D ec 1 99 9 Equivariant K - theory , wreath products , and Heisenberg algebra

Given a finite group G and a G-space X, we show that a direct sum FG(X) = ⊕ n≥0KGn(X n) ⊗ C admits a natural graded Hopf algebra and λ-ring structure, where Gn denotes the wreath product G ∼ Sn. FG(X) is shown to be isomorphic to a certain supersymmetric product in terms of KG(X) ⊗ C as a graded algebra. We further prove that FG(X) is isomorphic to the Fock space of an infinite dimensional Heis...

متن کامل

Algebraic structures behind Hilbert schemes and wreath products

In this paper we review various strikingly parallel algebraic structures behind Hilbert schemes of points on surfaces and certain finite groups called the wreath products. We explain connections among Hilbert schemes, wreath products, infinite-dimensional Lie algebras, and vertex algebras. As an application we further describe the cohomology ring structure of the Hilbert schemes. We organize th...

متن کامل

Terwilliger algebras of wreath products of association schemes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER 1. A GENERAL OVERVIEW AND INTRODUCTION . . . . 1 CHAPTER 2. PRELIMINARIES: COMMUTATIVE ASSOCIATION SCHEMES AND THEIR TERWILLIGER ALGEBRAS . . . . . . . . . . . . . . . . . 4 2.1 The Bose-Mesner Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Dual Bose-Mesner Algebra . . . . . . ....

متن کامل

Compression bounds for wreath products

We show that if G and H are finitely generated groups whose Hilbert compression exponent is positive, then so is the Hilbert compression exponent of the wreath G ≀ H . We also prove an analogous result for coarse embeddings of wreath products. In the special case G = Z, H = Z ≀ Z our result implies that the Hilbert compression exponent of Z ≀ (Z ≀ Z) is at least 1/4, answering a question posed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008